Method for Transforming Continuous PM2.5 Monitoring Data for Comparison with the FRM

Michael Rizzo^a, Peter Scheff^b, and William Kaldy^c

^aUSEPA Region 5, Air Monitoring

^bUniversity of Illinois — Chicago School of Public

Health, Environmental and Occupational

Health Sciences

^cHamilton County, OH Department of Environmental Services

Data

- Looked at a variety sites from across country
 - All TEOMs
 - Variations in methodology
 - Season
 - Correction factors
- Sites with more than 1 year's worth of data
 - Collocated PM2.5 FRM and continuous method
 - Needed at least 63 samples across entire year to create model and R² at least 0.77
 - Based on USEPA DQOs
 - "Surplus" data used to validate model

Data

- Valid days had 18 out of 24 hours
 - All variables had to meet requirement
- Model development
 - Hourly PM2.5 averaged over 24 hours
 - 24 hour FRM measurment
 - 24 hour average temperature
 - Collected from FRM monitor

Validation

- National Weather Service temperatures
 - 2000 through 2001
- Closest met station temperatures
 - **2002**
- Examined hourly transformations averaged over 24 hours
 - Compared to FRM

WINTER PARK, FL

WINSTON-SALEM, NC

INDIANAPOLIS, IN

GRAND RAPIDS, MI

NEW YORK CITY, NY

Methodology

"Knot" Method

Equation 1 (if the temperature is less than the value of the knot)

```
FRM = \beta_0 + \beta_1*(avetemp-knot) + \beta_3*cont + \beta_4*cont(avetemp-knot) where:
```

FRM is the Federal Reference Method measurement

 β_0 is the intercept

 β_1 is the coefficient for the temperature term for temperatures less than the knot avetemp is the daily average temperature

knot is the temperature at which the linear relationship between the FRM and continuous measurement changes

 β_3 is the coefficient for the continuous measurement

cont is the continuous TEOM measurement

 β_4 is the coefficient of the interaction between the TEOM and temperature measurements for temperature less than the knot

4

Methodology

"Knot" Method

Equation 2 (if the temperature is greater than the value of the knot)

FRM = β_0 + β_2 *(avetemp-knot) + β_3 *cont + β_5 *cont(avetemp-knot) where:

FRM is the Federal Reference Method measurement

 β_0 is the intercept

 β_2 is the coefficient for the temperature term for temperatures less than the knot

avetemp is the daily average temperature

knot is the temperature at which the linear relationship between the FRM and continuous measurement changes

 β_3 is the coefficient for the continuous measurement

cont is the continuous TEOM measurement

 β_5 is the coefficient of the interaction between the TEOM and temperature

measurements for temperature less than the knot

Methodology

Linear Model

- FRM = β_0 + β_1 *cont + β_2 *spring + β_3 *summer + β_4 *fall + β_5 *cont*spring + β_6 *cont*summer + β_7 *cont*fall
- FRM = Federal Reference Method
- Cont = 24 hour avg continuous measurement
- Spring, summer, fall = seasonal variables
- Cont*spring, cont*summer, cont*fall = interaction terms

Results "Knot" Model

- Continuous parameter (β₃) usually close to 1
- Temperature>"Knot" interaction term (β_5) usually not statistically significant
- Temperature<"Knot" interaction term
 (β₄) usually statistically significant
- Knot
 - Median: 15.4° C

Results Seasonal Linear Model

- R² comparable to "Knot" model
- Surrogate for temperature in "Knot" model
- Disadvantage
 - Changes in season from fitting data change relationship between FRM and continuous measurement

Examples of Model Fits Using Data Models Constructed From

NEW YORK CITY, NY

INDIANAPOLIS, IN

CINCINNATI, OH

GRAND RAPIDS, MI

ST PETERSBURG, FL

CHARLOTTE, NC

FORT WORTH, TX

KEOSAUQUA, IA

Examples of Validation Using "Extra" Data

NEW YORK CITY, NY

INDIANAPOLIS, IN

CINCINNATI, OH

GRAND RAPIDS, MI

ST PETERSBURG, FL

CHARLOTTE, NC

FORT WORTH, TX

KEOSAUQUA, IA

2001 Fine Particulate Speciation Concentrations

Conclusions

- "Knot" and seasonal linear method satisfy DQO requirements
- Some sort of seasonal adjustment necessary in areas with nitrate problem
- "Knot" and seasonally adjusted linear models comparable
 - Linear model surrogate for "Knot" model
- Uncertainty about seasonally adjusted linear model under changing conditions

Conclusions

- Need for more data
 - Other monitoring technologies
 - Validation purposes
- Need for consistent national operating procedures across methodologies is **ESSENTIAL**
- Statistical transformation is temporary solution
 - Need technological solution implemented consistently across country
 - No change in data by use of various transformations across States
 - Better ensures data consistency and quality across States